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ABSTRACT

In this paper we presents Aseveral results for three different canonical

forms of linear prediction on a plane. These filters have causal, semicausal

and noncausal prediction geometries. Starting from their properties-we consider

the problem of realization of these filters from a given power spectral density

function (SDF). Since it is not possible in general to obtain rational spectral

factors of a two dimensional SDF, we-propose algorithms for obtaining rational

approximations which are stable and converge to their limit (irrational) factors

as the order of approximation is increased. It is also shown that the normal

equations associated with the minimum variance two-dimensional prediction

filters give a useful algorithm for obtaining rational approximations which

are stable and converge to their unique limit filters. This result allows

design of finite order, stable filters by solving a finite numberof equations

while realizing the given SDF arbitrarily closely.



I. INTRODUCTION

Many digital signal processing algorithms are designed for the processing

of random data. For instance, a digital image may be considered to be a sample

function of a discrete, wide sense stationary random field, which is described

in terms of its covariance function or equivalently the spectral density function

(SDF). Although algorithms such as Wiener filtering [1], transform coding of

images (2], etc. can be designed once the covariance function is given, it is

sometimes useful to obtain a linear difference equation representation of the

random field. The model, if sufficiently accurate, should realize the SDF of

the random field closely. Such models are useful in image coding, recursive

filtering, image synthesis, spectral estimation, etc.

These models can be realized by spectral factorization. In the one dimen-

sional (l-D) case, this involves factoring the SDF of the random process into

causal (recurs've) and anticausal factors. The general techniques to do this

include the Wiener-Doob method (3] and the linear prediction method [4]. The

principle of the Wiener-Doob method is to map the poles and zeros of the SDF

into singularities of the logarithm of the SDF. This allows easy decomposition

of singularities into those that are within the unit circle, and into those that

are outside, leading to minimum phase and maximum phase factors, respectively.

The linear prediction method fits successively higher order autoregressive models

to the given covariances by solving a finite set of Toeplitz equations. Under

some mild conditions on the given SDF, the SDFs realized by the models can be

shown to converge uniformly to the given SDF.

In two dimensions (2-D), spectral factorization is complicated by the lack

of a fundamental theorem of algebra. Whittle [5] recognized this difficulty,

and indicated a Wiener-Doob like technique for 2-D spectral factorization. This

fact seems to have been ignored until it was rediscovered by Ekstrom and Woods (6).
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They provided an extension of the 1-0 Wiener-Doob principle to 2-D to obtain

recursive filter designs from given frequency magnitude specifications. The

resulting infinite order causal factors were approximated to finite order by

using suitable truncation and windowing.

Subsequently, Marzetta [7,8] approached the spectral factorization problem

by extending the results of 1-D prediction theory to 2-D. The recursive factors

obtained here are of infinite order in at least one of the dimensions. Also,

the exact solution can only be obtained by solving an infinite set of linear

equations. A 2-D analog of Levinson's algorithm was devised to obtain the theore-

tically guaranteed solution. More importantly, it was shown that a one-to-one

relationship exists between the reflection coefficients obtained in the Levinson

algorithm, the associated prediction error filters, and the covariances of the

random field used in the algorithm. Also, it was proven that reflection coeffi-

cients given on a finite support yield finite support causal factors. These facts

were used to design an approximate spectral factorization algorithm where the

reflection coefficients are sequentially chosen on a finite lattice to minimize

a prediction error functional.

In [g], Jain studied a class of hyperbolic, parabolic, and elliptic partial

differential equations, and from their finite difference qpproximations developed

finite order causal, semicausal, and noncausal representation for 2-D random

fields. In [10], higher order models were considered, and it was shown that the

coefficients could be obtained by solving a finite set of block Toeplitz equations.

Though a unique solution may be found for the model parameters, there is no one-

to-one correspondence between the coefficients and the covariances used in model

realization. Also, model stability is not guaranteed. The advantage, however,

is that only a finite Toeplitz set of equations need be solved.

An alternate method of obtaining models by factorizing the SDF, S(Z1,Z2) is

shown in [7,8) for the causal case and in [10] for both, causal and semicausal
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cases. Here, a set of normal equations, parametric in z1 must be sequentially

solved for larger and larger orders, resulting in factors which are irrational

in zI. Also in [10], the Wiener-Doob principle has been extended to obtain

semicausal representations.

In this paper we present several results concerning realization of noncausal,

semicausal and causal models by linear prediction principles. For each class of

models we present two types of algorithms, Al and A2. In algorithm Al we start

with the given power spectrum density function (SDF) to obtain infinite order

(irrational) realizations. A rationalization procedure is incorporated into the

algorithms to provide stable models. These algorithms will theoretically require,

as in all prior methods, solution of an infinite number of equations. A Levinson

type algorithm presented for semicausal models turns out to be an extension

of a similar algorithm [7,8] for causal models. The results for noncausal models

do not require spectral factorization.

The algorithms A2 yield approximate rational realizations of 2-D SDFs which

are obtained by solving finite number of equations. Our results give asymptotic

behavior of properties such as spectral match, stability, covariance match, etc.,

of these models as their order is increased to infinity. An important consequence

is that one obtains a practical procedure for designing stable causal, semicausal

and noncausal models which remain finite in order while matching the given

spectra arbitrarily closely.

In Section II, we provide the necessary definitions and properties to aid

in the understanding of the subsequent sections. One dimensional noncausal models

are analyzed in Section III, since the considerations involved there lead to insight

into 2-D model bahaviour. In Section IV, we present results on realization of

2-D noncausal models, by solving finite order block Toeplitz equations. In Sections

V and VI, results for semicausal and 2-0 causal models are presented. In Section

VII, we give examples verifying the theoretical results of the earlier sections.
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II. NOTATION, DEFINITION AND PROPERTIES

2.1 Notation

a) Two dimensional (2-0) sequences are denoted by u(i,j), E(ij), etc;

where (i,j) are integers defined on a regular 2-D lattice.

b) Matrices are denoted by upper case letters, e.g. U, A, R, etc. For

example,

U & {u(i,j) ; I < i < N, I < j < M}

is a N x M matrix of elements u(i,j). The jth column of U is written

as uj and the (i,j) th element of U is written as u(i,j).

c) The transpose of U is denoted as UT. The complex conjugate of U is

denoted as U*.

d) The z-transform of a sequence u(i,j) is denoted as U(zl,z 2), and

U(ww 2 ) denotes the z-transform evaluated on the unit circles,

1zll = 1z2 1 = 1

e) The maximum lower bound of a function f(x) on a domain X is denoted

as inf~f(x)], and its minimum upper bound is denoted sup[f(x)).

2.2 Definitions and Properties

1) A discrete random field {u(i,j)} is a 2-D sequence of random variables

u(i,j). If the random variables are real and jointly Gaussian, then

it is called a real, Gaussian random field.

2) The random field {u(i,j)} is called wide sense stationary (or just

stationary) if its mean is constant, and its covariance is independent

of spatial translation, i.e.

E[u(i,j)] = p(ij) - p

cov[u(i,j)u(m,n)] 4 E[u(i,j) - p)(u(mn) - u)] = ru (i-m,j-n)

When there is no --- r o' .,,nfusion, the subscript u will be dropped
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from r u(.,.). Henceforth, we will consider real, zero mean, stationary

random fields.

3) The random field {u(i,j)} is called white if the random variables

u(i,j) are mutually uncorrelated, i.e.

ru (k,t) = a26(kY)

where a2 is the variance of the field and 6(k,k) is the Kronecker

delta function.

4) The spectral density function (SDF), S(z1,z2) of {u(i,j)} is called

positive analytic (PA) [8] if S(w1,W2 )>O and if S(zl,z 2) is analytic in

a neighborhood of 1zl = !z2 l = 1. Let this neighborhood be

r = {yl<lzll<lyl, y2<Iz21 < /'y2; O<yiy 2 <l} (1)

Then,

a) S(zl,z 2 ) has a unique Laurent expansion [11] given by

S(zlZ 2 ) = E I r(k,Z)zjkz-L , zlz 2 E : (2)

2 k=-00 Z=-001

b) Since S(wl,w 2 ) > 0, by continuity, there exists another

neighborhood

L = { <Izl 11<l/(%, c(2<Iz 2 1<I/ 2; O<ctic 2<l} (3)

where S- (zl,z 2) is PA, and has the Laurent expansion

S'1(zl$z 2 = 2) r'(k,%)zIkz2k , z 1 ,z 2 c a (4)
k=- 9.=-oo

c) Convergence of the series in (2) and (4) implies that the

sequences r(k,t) and r-(k,l) are exponentially bounded:

I B. (5)

for some positive constants A, B.
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d) The sequence of functions {rRZ(zl)} defined as

r (z,) = ' r(kf)zl- = 2--Iz -l z2
- S(zl 'z2 )dz2  (6)

9. k-m fzl k

i) are analytic in the neighborhood {yl<lz,1 <l/Yl }

ii) form a positive definite sequence on Izil = 1, i.e; for

any Xk(Z1) not identically zero,

Xk(zl)rk_(zl)x*(zl) > 0 , 1Zl1 = 1

This means that the Toeplitz matrix

Rq(Z l ) = rl(zI) (7)

rl(z1 )

rq(Z l ) rl(z I ) rO(z l )

is Hermitian positive definite on 1zl1 = 1.

e) The sequence {r(k,Z)} is also positive definite.

The following definitions and properties associated with linear predic-

tion, which are discussed in greater detail in [10], will be needed here.

5) Let iu(ij) denote a linear prediction (LP) estimate of the random

variable u(i,j). Then

iu(ij) = a(m,n)u(i-m,j-n) (8)
(m,n)ES

The a(m,n) are called the predictor coefficients and S, a subset of

the 2-D lattice is called the prediction region.
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The geometry of S depends on the type of prediction estimate

considered, viz; causal, semi-causal or non-causal. With a hypo-

thetical scanning mechanism that scans sequentially from top to

bottom and left to right, the three prediction regions may be defined

as follows:

Causal Prediction:

S1 = (m,n):{n>l,Vm} U {n=O,m>l} (9)

Semi-causal Prediction:

S2 = (m,n):{n>l,Vm} U {n=O,VmNO} (10)

Non-causal Prediction:

S 3 = (m,nS:{V(m,n5 # (0,0)} 11

Also, we define

Si = 9i U (0,0) , i=1,2,3 (12)

The above prediction regions are depicted in Fig. 1. In practice,

only a finite number of nearest neighbor samples from prediction windows

Wi CSi can be used in the prediction. Prediction coefficients {a(m,n)}

defined on Si are said to have continuous support whereas if defined

only on the Wi they have discontinuous support.

The prediction windows Wi that we consider have rectangular support,

for convenience:

W = (m,n):{lSn<q,-ppm<p & n=0,l<mg} causal (13)

W2 = (m,n):{O<n<q,-p.m<__p, (m,n)#(O,O)) semi-causal (14)

W3 = (m,n):{-q<n_<q,-pSmg , (m,n)#(OO)} non-causal (15)

w = WiU(O,0) , i=1,2,3 (16)Wi 1
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Causal Prediction: S

01

Semicausal Prediction:

Noncausal Prediction:

Fig. 1: Examples of Causal, Semicausal and Noncausal

Prediction Regions
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The prediction region l in (9) is also called the non-symmetric half

plane (NSHP) in the literature [6].

6) The predictor coefficients a(m,n) in (8) must be chosen according to some

criterion. Minimum Variance Predictors are designed to minimize the

variance of the prediction error, i.e.

a2 = min E[s2(ij)], C(ij) 6 u(ij) - u(i,j) (17a)

For Gaussian random fields, the predictor will be linear. The

orthogonality condition associated with minimum variance criterion is

E{[u(ij) - a(m,n)u(i-m,j-n)]u(i-k,j-)}= B26(RZ)(m,n x

(k,9)ESx , x=1,2,3

which gives

r(k,k) - I a(m,n)r(k-m,k-n) B26(k,t) , (k,Z)c$i , i=1,2,3 (17b)
(m,'nS

If the prediction window has finite support Wi, i=1,2,3, then the optimum

predictor will satisfy (17b) where the summation is over (m,n)cWi, i.e.,

r(k,k) - I . a(m,n)r(k-m,k-n) = B2 (k,Z) , (k,E)eS i , i=1,2,3 (17c)
m,nEW 

i

Note that (17c) must be satisfied for V(k,k)cSiW i by the finite support

optimum predictor.

7) A Stochastic Representation for a Gaussian field {u(i,j)} may be

written as

u(i,j) = i(i,j) + E(i,j) (18)

where u(i,j) is an arbitrary prediction of u(ij), and {U(ij)} is

another random field such that (18) realizes the covariance proper-

ties of {u(i,j)}. Here we consider minimum variance representations
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(MVRs) where u(ij) is chosen to be a causal, semi-causal or non-causal

minimum variance predictor. The difference in prediction geometries

determine the properties of the prediction error field {e(i,j)}. As

shown in [10], fc(ij)} is

a) a white noise field for causal MVRs.

b) white in the causal dimension and correlated in the non-causal

dimension for semi-causal MVRs.

c) a correlated field for non-causal MVRs.

These properties are important because they point out that for semicausal

and noncausal geometries white noise driven models will not have the

minimum variance property.

8) A MVR as in (18) can be considered to be a linear difference equation

with input {} and output {u}. The SDF of {ul is then given by

S (z1 'z2) u (19)SuZZ):A(Zl, Z2 )A(z , z2I

where A(zl ,z2) = 1 - a(m,n)z (20)
(m,n)S mz

is called the prediction error filter (PEF) for any prediction geometry.

9) The MVR of (18) is stable in the bounded input, bounded output (BIBO)

sense if the PEF, A(zlz 2) satisfies certain conditions. For the three

prediction windows in (13-15), the MVR is stable if and only if

a) A(zl,z 2) t 0 , Iz i , z2  = 00 causal (21)

A(zl,z 2 ) t 0 , IZ1 =1, Iz2 1 > 13

P p q -n
X a(m,O)z m E a(m,n)zIm z2

n
A(zlZ 2) = l - m-l m=-p n=l
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b) A(zlZ 2) t 0, 0 Z 1 = 1 , 1z 21 > 1 Semi-causal (22)

P P q -rn-nA(Zl ,z 2 ) = 1- a(m,O)z m  -M E a(m,n)z mz 2m=-p m=-p n=l

mtO

c) A(zl,z 2 ) t 0 , 1zl1 =, 1Iz 21 = 1 Non-causal (23)

p q
A(Zl,z 2) = 1 - Z Z a(m,n)zmzn

m=-p n=-q
(m,n)#(O,O)

10) Closely related to stability is the concept of minimum phase. A

stable causal filter is minimum phase if it has a causal stable in-

verse. A stable semi-causal filter is semi-minimum phase if it has

a stable semi-causal inverse. Marzetta [7,8] also considers analytic

minimum phase (AMP) filters i.e. minimum phase filters that are also

analytic in a neighborhood of the unit circles.

III. ONE DIMENSIONAL NON-CAUSAL MODELS

First we present some results on 1-D non-causal representations with regard

to properties such as stability, correlation match, etc., to provide direct in-

sight into similar questions for 2-D representations. The 1-D non-causal

representations are important in their own right since they find application in

data compression and restoration of images using image transforms (for example,

see [13,14]). These results provide certain extensions of the theory of non-

causal models developed in [10].

A non-causal MVR for a Gaussian random process {u(k)I may be written

u(k) = u(k) + c(k) (24)

u(k) = Z a(z)u(k-t) (25)
0fo
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where u(k) is the minimum variance prediction estimate of u(k) based on all the

past and future, and {e(k)} is the prediction error process. The associated

orthogonality condition, E[u(k)c(k)]=O, implies the normal equations

r(n) = E a(k)r(n-k) + a26(n), Vn (26)
0#o

where r(n) are the covariances of {u(k)} and a2 = min E[c2(k)]. If S(Z) is the

SDF of {u(k)) then the above equation can be written as

S(z) = B2/A(z) , A(z) 4 1 - E a(z)z-  (27)Z#0

where A(z) is the PEF. The solution of (27) gives the parameters of the non-

causal MVR as [10]

a(k) = a(-Z) = -r-(z)/r-(O)

B2 = 1/r-(O) = 1/['- sl(w)dw] (28)

-Tr

where r-(2) are the Fourier series coefficients of S-l(w). Unlike the auto-

regressive (AR) models where {s(k)} turns out to be a white process, in the

non-causal MVR it is non-white. This can be seen by multiplying (24) by

e(k-n) and taking expe-tations, which yields

r (n) 2 6(n) - B2 1 a()6(n-) or S (z) = 2A(z) (29)
200

Thus, the non-causal PEF is not a whitening filter for the process u(k).

In (25), the prediction estimate u(k) uses all the past and future samples of

u(k) in the prediction. If however, {u(k)} is a pth order Markov process [15],

then

iu(k) I{u(k-t) , #.0} = iu(k) I{u(k-L) , l<1glp} . (30)

i.e. all the information needed for minimum variance non-causal prediction of
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u(k) is contained in the immediate p past and future samples of u(k).

Thus, the MVR of this process is finite order with {a(z)=O, j ->p}

2The other parameters, a , {a(), W:<p} can be obtained by solving a finite

subset of (26) corresponding to jn(<p. This solution will also satisfy (26)

for Inj>p. Eqn. (26) implies {uI and {ta are uncorrelated with cross covariance

r u(k) = 626(k), and (29) implies that {c} is a moving average process with

p (31)S (z = B2A(z); A(z) = 1 - E a()z(
k=-p
Z O

Therefore, the SDF realized by this MVR is all pole and rational. Now, if

the SDF of {u} is irrational (but well behaved), a finite order MVR will not

exist for the process. In practice, therefore, one approximates the infinite

MVR by a finite order minimum variance prediction model. The considerations

involved in designing models can be examined in relation to the properties of

th p
finite order MVRs. If a pth order minimum variance predictor, u(k) = Z a (Z)u(k-Z)

=-p p

is used to predict u(k), and e p(k) is the prediction error, then one can write

u(k) = u(k) + p(k). The associated orthogonality condition gives

p=-p
r~)=Z a (QZ)r(n-R,) + a p 6(n) , nj <~ p32

where 62 = min E[e2(k))
p p

In matrix form, the above equation can be written as

RPA a 21 (33a)

where

ap = [-ap(-p) ... -ap(-l) -ap(1) ... -a (p))T (33b)

= [0 .............. 0 1 0 .......... o]T (33c)
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r(0) r(-1) .......... r(-2p)"

r( 1)

Rp

(33d)

Rp ~r(-1)(3d

r(2p) r(1) r(O)

The solution of (33) yields the coefficients

2 = 1/[R 1] p+,p+l (34)
p p

a Mi =-a2[-1(5
p p p i,p+1 (35)

If Rp is positive definite (as will be the case when S(w) > 0), a unique /

solution exists. Now it can be proven that the SDF of the residual process

{p (k)} is given by

S (z) = [a + Su (z)JA (z) (36)

where S C(Z) is the cross SDF of {c p and {u. In general, no closed form

expression can be found for S C(z), and the residual process {p } is not simply

a moving average. Thus, the pth order non-causal predictor equation realizes the

SDF of {u} exactly as

S (z) = [a + S (z)]/A (z) • (37)u p C pU p

As a representation for {u), the exact predictor equation is not useful since

the forcing function {E p(k) is inadequately characterized. A more practical

model for {u) is obtained by constructing a process {0} with finite order MVR

p
6(k) = ap (Z)(k-k) + E(k) (38)

t=-p
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where {M} is chosen to be a moving average with S (z) MBA (z). This MVR

will realize the rational, all pole SOF Sa(z) = B2/A (z), and can also be
U p

considered as a model for {u}. Leaving aside the important question of model

accuracy (for the time being), we formally write the definition of a model,

for noncausal MVRs.

Definition: A pth order minimum variance non-causal model for a process

{u(k)} is a finite order MVR for another process {O(k)}, which is realized by

solving the normal equations (33) for {a (9), 2 } and forcing the representation
p p

(38) by R} with S (z) = B2Ap(z).

With models being formally defined, we state some properties of these.

Properties:

1) a p(i) = a p(-i) ; i = 1,2,...,p

This is so since R I is persymmetric (synnmetric about the cross diagonal)
p

and Ap is proportional to the middle column of R-I-p p-

2) 2 2
p - p+1

i.e. {2 } is a monotonically non-increasing sequence with increasing orderp!
p. This is intuitively obvious since for stationary processes inclusion

of more samples in the prediction cannot increase the prediction error.

3) If {u) is Pth order Markov, then the pth order non-causal model is the non-

causal MVR of the process. This can easily be seen by noting that the SDF

of this Markov process is of the form S(z) - C/A p(z) where C is a constant.

The inverse transform of this equation is of the form of (26). The subset of

this equation corresponding to lnl<._S is exactly the realization equation of

the pth order model.

4) The definition of a pth order non-causal model implies that the spectral

estimate from the model can be taken as

p(z) = 8 2/Ap(z) (39)
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This implies that the non-causal model will be stable if and only if

A p(z) has no roots on the unit circle. Unlike the causal (AR) model,

where stability of the model is equivalent to the positive definiteness

of the covariance sequence, a corresponding result has not yet been

discovered for non-causal models.

5) The correlation matching property of AR models does not hold for these

non-causal models. In fact, examination of (33) and Property 1) shows

that 2p covariances are used to calculate p model coefficients. Hence,

given a set of admissible model coefficients, there exists an infinite

number of covariance sequences that will satisfy (33). Also, realization

of non-causal models does not require spectral factorization.

The questions regarding stability and correlation matching properties

which are measures of the goodness of the model are answered formally

in the following theorem.

Theorem 1: Let {u(k)} be a Gaussian random process with PA SDF S(z). Then the

following may be proven:

a) Convergence of PEFs: The sequence of non-causal PEFs

p
A (z)=1 Z (

converges uniformly in some neighborhood of IzI = 1 to an analytic limit

PEF

lim Ap (z) = A(z)

The sequence of prediction error variances converges to a positive lower

limit, 
2

lim = B= 1 / st(w)d
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b) Stability: i pth order non-causal model is stable if and only if

A p(z) 0 , IzI = I

There exists some p 0  such that

A p(z) t 0 , Izj = 1, p > po

c) Correlation match: By choosing p > p the difference between the actual

covariances and the covariances realized by the model can be made arbi-

trarily small. The correlation match is exact either at p = or at

P = PO if {u) is a po order AR sequence.

The proof of this and all other theorems are given in the Appendix.

Remarks: Unlike the causal (AR) model, it is not true in general

for the non-causal models that stability of the pth order model guarantees

stability of the (p+1)s t order model. This only holds true for p > p0

where p0 is such that inf[A(w)] - ePO >0 (see A-14). The behavior of 2-D

non-causal models is similar to the 1-D case, and the method of analysis

is almost parallel and is presented in the next section.

IV. TWO DIMENSIONAL NON-CAUSAL MODELS

A Gaussian random field {u(ij)} has the non-causal MVR

u(i,j) = u(i,j) + C(i,j) (40)

u(i,j) = Z a(m,n)u(i-m,j-n) (41)
(m,n) cA3

where u(ij) is the minimum variance prediction estimate of u(ij) based

on all the past and future, and c{(i,j)} is the prediction error field. From

(17b) and in analogy with (26)-(29) for the one dimensional case, we have

r(k,) - Z a(m,n)r(k-m,X-n) + 826(k,Z), Y(k,k) (42)
(m,n) ES3

S(Z1,Z2) - a2/A(zl,z 2) ; A(zl,z2 ) =- a(mn)zImz2n (43)
(m,n) EiS3
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a(m,n) = a(-m,-n) (44)

The covariance of {c(k,k)} are given by

r (k,k) = a26(k,k) - 62 E a(m,n)6(k-m,z-n)
(m,n)CS 3

or

S (Z ,z2) = 62A(zlZ2)  (45)

implying that A(zl,z 2) is not a whitening filter for {u(k,t)}.

The variance of the prediction error is given by

6 2 /-1--- 7 (1 )dwld41Tl22fr fTr S (46)

Paralleling the discussion leading to the definition of 1-D non-causal

models, we have a similar definition for the 2-D case.

Definition: A (p,q) th order minimum variance non-causal model for {u(k,z)}

using the prediction window W is a finite order MVR for another process

Realization: With

UJ) p (m,n)u(i-m,j-n) + pq (i,j) (47)u~i~j) (m,n')c 3aq p

the {a (m,n)} are chosen to minimize E[cp2q(k)] = a 2 ' The associated ortho-
p,q q q

gonality condition yields the realization equation

r(k,)= ap,q(mn)r(k-mk-n) + p,q2 6(k,k), (k,k)cW3  (48)

In matrix notation, equation (48) can be writ t en as

R p,qpq p ,q-1 p,q (49a)

where Rp,q is a doubly block Toeplitz, synetric matrix defined as

m m m m ~ m mmmmmm ~mpm mqa
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0 R_ 1 R_2

lp,q 
R_

R~ R

r(O,k) r(-1,k) ........... r(-2p,k)

r(1,k)

R k r(-lk) (49b)

Lr(2p,k) r(l,k) r(0,k)j

T ~ =[. q ... 4 .. N

a(0,0) 1 (49d)

1 T [OTOT ... T 0 T..0 T] 1 =-[00 .. 010 .. ]T (49e)
p q =- -p1 - _

(q+l)s entry (P+l)st entry

if S~lw)> 0 then R pq is positive definite, V(p,q) and a unique solution

exists for the prediction coefficients in (49a) given by

a2 = 1/[R-qk~ 1 k =q(2p+l)+p+l (50a)

p , q ikk

a (m,n) = -a2 [R1 1 ; = (n+q)(2p+l)+m+p+1 (50b)p~q p ,q p'q £.,k

Again, once the model coefficients are calculated, the field {E(ij)) with
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S_(z zz 2 A (Z1,z ), whereS_(1', 2) =p,q p,q( 2

Ap,q(ZlZ 2) 1- ) ap,q (m,n)zImz2n

(m,n)cW3

is chosen to drive the finite order MVR

(i,j) = E a (m,n)U(i-m,j-n) + (ij)

(m,n)W 3

which is the model for {u(i,j)}

Some properties of 2-D non-causal models are similar to those of 1-D

models, viz;

1) a p,q(m,n) a pq(-m,-n)'

p,q p,q 1p~qp~q(m,n) £ W
ap (-m,n) = ap (m,-n)J

2' 2 >2 2 2

p,q - p+1,q , p,q+1 - p+l,q+1

3) If {u(k,k)} is a Markov field with SDF given by [15]

S(zl,z 2 ) = c/ ' b(m,n)zImz2n

(m,n)cW3

then the (p,q) order non-causal model realizes this SDF exactly.

In other words, it is the non-causal MVR of the field, satisfying

the orthogonality condition over S3. In general, the (p,q) order

non-causal model can be expected to realize an arbitrary SDF only

approximately. This is due to the fact that orthogonality is satis-

fied only over the window W3 which is a subset of S3. Increasing

the order of the models may therefore be expected to give better

correlation match and spectral fit.

The following theorem shows finite order, stable MVRs can be realized to

achieve arbitrarily close correlation or spectral match.
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Theorem 2: Let {u(k,k)} be a Gaussian random field with PA SDF S(zl,Z2).

Then the following may be proven:

a) Convergence of PEFs: The sequence of non-causal PEFs

Ap~(Z,Z 2 ) = 1 - X a )minz2-n

pq mnW 3  p,q (m,n1 2

converges uniformly on jzlI = 1, Iz2 1 = 1 to the analytic limit PEF

A(ZlZ2 ), i.e.

lim A p,q(z l z  = A(ZlZ2) IZl1 = Iz2i
(p,q)-

The sequence of prediction error variances {3, } converges monotonically
p,q

to a positive lower limit, 
a2 .

lim B =2 = _i f1 s-1 '(w )dwdw2 Y-
(p,q)- o p,q 41T 2  - -2

b) Stability: A (p,q) order non-causal model is stable if and only if

Ap,q(ZlZ 2 ) = 0 , 1zl = z21 = 1

There exists some (p0 ,q0 ) < - such that

A p,q(zZ2 ) t 0 , IZl z = Iz 1 (p,q)>(po,qo)

c) Correlation match: By choosing (p,q) > (po,q0 ), the difference between

the actual correlations and the correlations realized by the model can

be made arbitrarily small. At (p,q) = -, the correlation match is exact.

Remarks- The above theorem is similar to the theorem for 1-D non-causal

models except for one difference. For the 2-D case, we have been able

to prove uniform convergence of the PEFs to the limit PEF only on the unit
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circles, whereas for the 1-D case, uniform convergence is obtained in a

neighborhood of the unit circle. This is due to the complexity introduced

by the added dimension. In any case, the result is still general since

for stability and correlation matching considerations, only convergence

on the unit circle is required.

V. SEMI-CAUSAL MODELS

Semi-causal models are recursive in one of the dimensions and non-

recursive in the other. In the following, we investigate methods of

realizing finite order semi-causal models that will match a given SDF

arbitrarily closely. The realization equations may be found in [10],

but we present them here for completeness. Unlike non-causal models

which do not require spectral factorization for realization, semi-causal

models are realized by factorization of S(z1 ,z2 ) in one of the variables,

corresponding to the causal dimension. The two methods of factorization

that we consider are distinct from one another. In the first method, the

SDF on its entire region of support is used to realize the model. We

present some theorems and use a Levinson type computational algorithm [8]

to obtain rational models.

In the second method, covariances given on finite windows are used to

design finite order models by solving a set of linear block Toeplitz

equations. This is similar to the 2-D non-causal case and similar con-

vergence results for the models are proven.

Characterization of Semi-causal MVRs:

The semi-causal MVR for a Gaussian random field {u(i,j)} can be written as

u(i,j) = a(m,O)u(i-m,j) + I a(m,n)u(i-m,j-n) + E(ij) (51)
m=-M n=1 m--w
mo

The orthogonality condition (17b) becomes
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~ 2
r(k,Z) = a(m,O)r(k-m,Q.) + Z a(m,n)r(k-m, -n) + S 6(k, ), kO,VQ (52)

M=-C n=1 m=--
m$O

Defining

ao(Zl) 1- Z a(m,O)z m (53a)
M-00

m$O

It can be shown that a(m,O) form a positive definite sequence, and that

a(m,O) = a(-m,O). This implies that a0 
1 (zl) exists. Hence we may define

an(z I) = Z a(m,n)z n , an(z1 ) = an(z1)/a(Z) , n>1 (53b)
n m=-W n~

and taking z-transform on both sides of (52) w.r.t. k, we obtain

r,(zl) a(Zl)r _n(zi) + 2 a 1 (Z1 )6( ) , 0 (54)
n=1

In matrix form, the above can be written as

r,(Zl) r1(z, ) r2(zl1) .............. ......1 b(z)

rl(z 1) aI(z I)  0

r2(z1) -a2(z1 ) 0

r 2 (zl)1 b(z 1 62a01(z1 )

(55)

1 1

r2(zl)rl(zl)rO(zl
)  -

In the following we prove that an SDF may be uniquely factored as

S~z19z2 aa0 (z 1) (5a
SBz1z2a(zl 1 (56a)
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where

A(zl,z 2 ) = 1 - a(m,n)z1mz~n , a(Zl) = A(z1,) (56b)
(m,n)ES2

Then we show a computational procedure for solving (55) recursively to

obtain the factorization.

Theorem 3: Let the SDF S(zlz 2 ) be PA. Then it may be uniquely factored as

in (56), where the PEF A(zlz 2) is semi-minimum phase.

The following theorem gives a computational procedure similar to the 1-D

Levinson algorithm which recursively solves (54) to obtain the semi-causal

factors guaranteed in Theorem 3.

Theorem 4: Given that S(z1 ,z2 ) is PA, the system of equations (55) can be

solved recursively according to the procedure given below for Iz1l = 1, and q -

a ,o =1 (a)

p1(Z1) = r1(Z1)/r0 (Zl) initialization (b)

b0 (Z) = r0 (z1 ) (c)

For n = 1,2,...

an,o =1 (d)

n,i(zl) = 'n-l,i(Zl) - Pn(Zl)n-l,n-i(zl ); 
(57)

i=1,2,...,n-1 (e)

an,n (Z1 ) = pn(zl) 
f)

bn (Z 1  = bnil(Zl)[-Pn(Zl)Pn(Zll)] (g)

n-1

P(Zl) = 1 (r ( 1 n-Ii(zl)rn-i(zl)]/bn i(zl) (h)iI '1 ' zlr '
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At each stage of the recursion,

n
An(z 1,Z2 ) = 1 - E i (z )zn 2 =1 n',ZZ 1

is analytic minimum phase and

An(ZlZ 2) = an,(Zl)An(zl,z2)

A (il 2 an,O (z1 n 1zs 2)

is analytic semi-minimum phase. Here,

an,OZl 1 n /n( I 1 i M _an o0 1lm= -

m#O

At the qth step of the above recursions, the matrix equation to be solved is

rO(zl) rl(zl 1
) .......... rq(z 1 ) bq(Zl)

rl(Z 1 ) q,-aq(z1) 0

r2(z 1 ) -aq,2(Z1 ) ,IZ1=1j, (58)

r0 (zl) LqZ

r q(zl r 1(zl) ro(Zl) - JLqq (Z1) -j 0 _

Theorems 3 and 4 provide the theoretical basis for designing semi-causal

MVRs given the SOF of the random field. The theorems also point the way to

obtaining stable, finite order models from the generally irrational MVRs guaranteed

by the theorems. Rationalization is achieved in two steps: First, given the

trk(z,)}, the recursions in (57) are run to a value of q such that the PEFs

obtained approximate the SDF to a desired degree of accuracy. The behaviour

of the sequence { 2 can be used as an indicator of the goodness of spectralq

fit. The recursions can be stopped when the decrease in becomes marginal,

thereby determining the finite order in the z2 variable. However, the PEFs are

still irrational in the zI variable.
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As far as the second stage of approximation is concerned, an attempt

to rationalize the coefficients {an (Z1)} will in general lead to unstable

models. This can be circumvented by examining the recursions of (57), which

shows that as long as the sequence of analytic functions [P (z )} have

magnitude less than unity on Izll = 1, the filters An(Zlz 2 ) are guaranteed tor

be AMP. It is possible to find polynomials on (zl)} with magnitude less than

unity on jzlj = 1 which uniformly approximate the analytic functions fpn(Zl)).

For example, a truncation and windowing (by W n(k)) to a suitable length of the

Fourier coefficients, {on(01 of {pn(WI)} exhibit such behaviour. We adopt

this procedure for rationalization. Also, in [8], it is shown that if S(zl,z 2)

is PA, then the reflection coefficient sequence is exponentially bounded, i.e.

Sn jkj
1Pn (k)1 < AaI Ct2 ,n>0, Vk , 0<0Lia2<I

This property allows us to truncate P n(k) to shorter and shorter lengths as

n increases, while retaining stability. The following portions of (57) allow

us to reconstruct the finite order model:

a 0r (zI) 1 , n=0,1,2,...,q (a)

r rr zl) l 1

n~ ~ 1

rn,i(Zl ) = l~(Zl) _ Pn (ZlI )~

i:1 ....n-1 (b)

ar ,n(Z) r P(Z) (c)

(59)

0o(Zj )  ro(z 1) (d)

bn (Z (zl)[1-p(z1)pr(z1)] (e)

Pnkwhere pr(,) = Pn( k (f)

y h r we a n

Ultimately, however, we are interested in the actual model coefficients,



- 26 -

r r- ^r

a aq ,o(z)aq,i(z). It now remains to find a rational approximation to

bq(zl) which will yield aq,0 (z1 ). Since 6q(zi) is a PA function, we can fit

a finite order 1-D non-causal model (see Section III) that will approximate

bq(Z 1) to the desired degree of accuracy, i.e.

( r Bq/ q,O(z)

This gives the desired finite order model that is semi-minimum phase. Finally,

it must be mentioned that the region of support of the predictor coefficients

will almost never be rectangular due to the convolutions involved in the re-

cursions [see Eqns. (57)]. Of course, this does not pose any limitation.

As an example, the predictor geometry is shown in Fig. 2 for q=3, with

the sequences {P1(k)},{P 2 (k)}, and {P3 (k)} truncated to pl=3, P2=
2 , P3=1

[see (59f)], respectively, and for a non-causal model order of p=3.

A flow chart of the rationalization procedure is shown in Fig. 3 for

convenience.

The above method of obtaining stable, semi-causal MVRs assumed complete

knowledge of the 2-D covariance sequence in one of the dimensions. The question

we address next is the problem of realizing stable semi-causal MVRs given

correlations on a finite 2-D window. Except for the difference in prediction

geometry, the methods involved are similar to the 2-D non-causal case.

For a prediction window such as W2, the semi-causal minimum variance model

car, be written as

u(i,j) = UO(i,j) + Cp,q(ij) (60)

U(ij) 4 a pq(m~n)u(i-m,j-n) (61)(m'n)cQW2 a~~~

with min[E(E,2  (,j))] =B2 . The normal equations (17c) written for the region

p ,q p ,q*

W2 give

r(k,t) = E ap,q (m,O)r(k-m,k) + E E a p,q(m,n)r(k-m,X-n)+B ,q6(kA);(k,Z)cW2 (62)
mp pM=-p n=1p
moo
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Fig. 2: Example of PEF Support for Semicausal Models
Via the Rationalization Procedure
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Defining apq(OO) 1 1, we may write the above equation 
in matrix form as

p,q-p,q Pq-Pq(62a)

where
Ro R_ R_2 . . . . . . .. R_

R \\ R_2  (62b)

p,q 
R_

Rq R2 R1 R0

r(O,k) r(-1,k) ........... r(-p,k)

r(1,k
= R k (62c)

RkA r(-I ,k)

_r(2pk) r(1,k) r(O,k)

Tp~ T.... T T T -a.p~) a(.p+l,k) a(O,k) a(p,k)] T (62d)

1  T [T T T.. 0T 1  = [ ... o 1 o ... T  (62e)

,q - - -(p+l st entry)

and 62 > 0 exists for (62a) given 
by

2 = 1/ERp (63a)

p ,q p q p+,p+l
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a (mn) 2[R k,p+1 ; k = n(2p+1)+m+p+1 (63b)
pq pq pq= 2 -I

From equations (62), it is evident that covariances from a window twice

the size of W2 are needed to calculate {ap,q (m,n)} on W2. Hence, there is no

unique correspondence between the predictor coefficients and the covariances

realized by the model. Also, stability is not guaranteed. These statements

were true for non-causal models realized by this method, and as we shall see,

will be true for causal models also. Theorems similar to Theorem 2 may be

proven for these mclels also. The method of proof is similar, with minor dif-

ferences arising from different prediction geometries.

Theorem 5: Let the Gaussian random field {u(k,k)} have a PA SDF, S(zlz 2).

Then, the following may be proven:

a) Convergence of PEFs: The sequence of semi-causal PEFs

A= 1_- , a (m,n)zm z2
n

p,qZlZ2) I (m,n)cW2  p,q

converges uniformly in the region Z1 = {{zI1 = I, Iz21 > 1 to the ana-

lytic semi-minimum phase PEF A(zlZ 2).

The sequence of prediction error variances {2 } converges mono-

tonically to a positive lower limit, B2

lim 2  2 = 1 /[ If7 d-l(l)d' ]  d(wI) = B2 1 I)(p,q)-o P,q 27r Tr 0

b) Stability: A (p,q) order semi-causal model is stable iff

Ap,q(zl,Z2 ) # 0, (ZlZ 2) E Z1

There exists some (p oq 0 )< - such that

A p,q(ZlZ 2) # 0, (zlz 2 ) Z1 , (p,q) > (po,qo)
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c) Correlation match: By choosing (p,q) > (p0 ,q0), the difference between

the actual correlations and the correlations realized by the model can

be made aribtrarily small. At (p,q) = =, the correlation match is exact.

VI. 2-D CAUSAL MODELS

Causal models are recursive in both dimensions with an ordered definition

of past and future. Realization of these models from the SDF S(zl,z 2) requires

factorization in both, z1 and z2 variables. Similar to the semi-causal case,

we consider two methods of obtaining these models. Realization of these models

from the SDF on its entire region of support using the LP approach has received

attention in the literature [7-8]. Obtaining rational models has been considered

in [8] by way c, finite support reflection coefficient representation. The

method presented here rationalizes the reflection coefficients obtained in

the 2-D Levinson recursions to obtain finite order models. The other method

of obtaining rational models is to use covariances given on a finite window,

and solve a finite set of linear equations. Convergence and stability results

for models realized by this method are similar to the non-causal and semi-causal

results.

Characterization of Causal MVRs:

The causal MVR for a Gaussian random field {u(i,j)} is

u(ij) = I a(m,O)u(i-m,j) + I I a(m,n)u(i-m,j-n) + c(i,j) (64)
m=1 n=1 m=-m

The corresponding normal equations

r(k,2) = Z a(m,O)r(k-m,k) + I a(m,n)r(k-m,Z-n) + 626(k,k) , (k,Z)cS1  (65)
m=1 n=1 m=--

reduce in the zI-transform domain to
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rQ(z1 ) n(zl)rZn(zI) + 2a 1 (z1)aO0(z11)5( ) , zo (66)
n=1

where n (z1), an(zI); n=1,2,... are defined in (53b) and

aO(z1 ) Q 1 - Z a(m,O)z m (67)

m:_1

The proof of the existence of a unique solution to (66), which is

analytic minimum phase is similar to Theorem 3.

The procedure given in Theorem 4 can be directly used to find the causal

MVR except for the following differences:

1) {an,O(zl ) are minimum phase functions obtained by a second stage of

factorization in the zI variable of the positive analytic functions

{b n(z)} such that

b (z1) 2 /a (za (Zl
I) (68)bnZ I 8n/an,O 1l n,OI

2) The PEFs {A n(ZZ2)} defined as

An(ZlZ 2) = an,O(zl)An(zlz 2) (69)

are now analytic minimum phase.

3) The rationalization procedure is the same as for semi-causal models,

except that a 1-D causal model is used to fit bq(Z I) as opposed to a

non-causal model.

Now we consider the problem of finding finite order causal nodels, given

covariances on a finite window. The normal equations for a (p,q) order causal

model is

r(k,z) Ila (m,O)r(k-m,z) + m a q(m 'n)r(k-m 'Z-n ) = B 6(k,Z), (k,)cW1  (70)
jm=-p n=1 pIq
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In matrix notation, the above equation can be written as

Rpqaq =a 2p q (71a)

where

R6 Re Re'**. . . . .
-ql

1p0 ,-1

R' Rqqi

Rk is defined in (62c) and

r(p,k) r(p-1,k) ........ r(-p,k)

R Re ReT (71b)r(2p,k) r(2p-l,k) ........ r(O,k)

T T  T T a T A T
p,q 0 A2 ]...... a0 = [ -a,q(1,0) ........ .-a p,q(p,O)

a p,q0(,) - I

T (-p,i) ...... a (0,i) .....- a (p,i)]- i  p,q p,q pq

1T  A [1T 0T 0T ..... 0 ] 1T = [1 0 ..... 0] (71C)
-P,q - - -P

Given that S(w1,w2 ) > 0, a unique solution to the system of equations

(71) exists. Considerations such as convergence of PEFs, stability and

correlation match follow similar lines of reasoning as in the non-causal and

semi-causal case. We briefly state the results:
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1) The sequence of PEFs

A pq (z ,z2) 1 m ap,q (m,O)z1m p 1 apq(m,n)zjmz2nAp~q(lZ2) = i m I p~q =-p n=l

converge uniformly to the limit PEF A(z1,z2) in the region

Z = {z1I = 1, Iz21 > 1) U Iz I z2  }

The sequence of prediction error variances converges monotonically

to a positive lower limit

lim ,q 2 = exp[-2 ff log S(W1, 2)dwl,dw2]
(Pq)- p 4r2 _-rrPw

2) For some (p,q) > (po,qo), Ap,q(ZlZ 2 ) ' 0 for (zl,z 2 ) c Z, so that

the causal models of order (p,q) > (p0 ,qo) are stable.

3) For (p,q) > (po,q.) the correlation match can be made arbitrarily small.

VII. EXPERIMENTAL RESULTS AND COMPARISONS

The folliwing provides a verification of the various theoretical results

obtained for 2-D stochastic models in the preceding sections. The results are

demonstrated for a covariance model that is often used in image processing viz;

the exponential isotropic covariance, r(k,t)=p . For our simulations, we

have used p=O.9. A 5x5 portion of this covariance sequence is shown in Fig. 4.

Only the entries in the positive quadrant are given, since the other quadrants

can be filled in by symmetry. The SDF corresponding to this covariance sequence

is irrational and satisfies the PA assumption. Wherever required, z-transforms

were evaluated on the unit circle(s) using 256 point DFTs in 1-0 and 256x256 DFTs

in 2-D.

Non-causal models were realized for this covariance sequence by solving

the linear block Toeplitz equations of (49) using an efficient recursive

algorithm (16]. The SOF corresponding to a (p,q) order model is
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.551 .591 .624 .648 .656

.591 .640 .684 .717 .729

.624 .684 .742 .790 .810 k

.648 .717 .790 .862 .900

.656 .729 .810 .900 1.000

1(0,0)

Fig. 4: Covariances Corresponding to r(k,z) = 
.9 k2+ 2

on the Quarter Plane
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2

pq p,q(zlZ 2 )

P q -rn-n
where Apq(ZlZ 2) = 1 - J_ ap (mn)z1 z2

m=-p n=-q ,q
(m,n)t(O,O)

The covariances realized by the model, {r p,q(k,k)} are obtained as the

inverse transform of Sp,q (zlz 2) •

Figure 5 shows the PEFs and the covariance mismatch for (1,1) and (1,2)

order non-causal models. Examination of the PEF for the (1,1) model seems to

suggest a four point model, but this is belied by the substantial covariance

mismatch obtained. The (1,2) model gives a smaller mismatch, and B 2 < 62

Results obtained for progressively larger models confirm the results of Theorem 2.

Infinite order spectral factorization was carried out to obtain the semi-

causal MVR using the Wiener-Doob factorization method. Details of this method

can be found in [10]. The coefficients of the PEF corresponding to the MVR are

shown in Fig. 6. Examination of the coefficients {a(m,O)} indicate that

F{(i,j)1 is very nearly a first order moving average process in the non-causal

dimension.

Semi-causal models were realized using the rationalization procedure of

Section V. Fig. 7 shows the PEF of the rational model obtained by using

second order in the causal dimension (q=2). The infinite length reflection

coefficient sequences {p1 (k)} and {P2 (k)} were truncated to 5 terms and 3 terms,

respectively, i.e.

p r(k) = pl(k) j kf<:2 P r(k) (k{)2(k) l

A second order (p=2) 1-O non-causal model was used to fit b2 (zl), giving

a total of 23 coefficients for the semi-causal model. For this case, the PEF

is given as
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-.0006 -.2518 -.0006 1
-.2518 1.0000 -.2518 0 m
-.0006 -.2518 -.0006 -1

1 0 -1

n

82  .039527

a) PEF Coefficients Corresponding to (p,q) = (1,I) Noncausal Model

.0278 -.0345 -.2417 -.0345 .0278 1

.0209 -.2700 1.0000 -.2700 .0209 0 m

.0278 --0345 -.2417 -.0345 .0278 -1
-2 -1 0 1 2

n

B2 .0385331 ,2

b) PEF Coefficients Corresponding to (p,q) = (1,2) Noncausal Model

.413 .420 .427 .433 .435 .324 .180 .053 -.033 -.065

.420 .431 .444 .455 .459 .337 .190 .061 -.029 -.062

.427 .444 .465 .484 .491 k .350 .204 .076 -.014 -.046 k

.433 .455 .484 .516 .526 .362 .218 .094 .008 -.025

.435 .459 .491 .526 .537 .366 .223 .099 .015 -.016

(0,0) (0,0)

c) (r(k,l) - rl1 (k,P)} d) {r(k,f) - rl(k,I)I

Fig. 5: PEFs and Covariance Mismatches for (p,q) = (1,1)
and (1,2) Noncausal Models
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.0010 -. 0016

.0015 -. 0024
.0004 .0026 -.0039

.0004 .0052 .0259 .0019 2

.0010 .0168 -.0385 -.3866 1
...... 0014 .0282 -.2753 1.0 0 m

.0010 .0168 -.0385 -.3866 -1

.0004 .0052 .0259 .0019 -2
.0006 .0056 -.0063
.0004 .0026 -.0039

.0015 -.0024

.0010 -.0016

3 2 10

2B .093242

Fig. 6: Infinite Order Semicausal PEF Obtained by
Wiener-Doob Factorization
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-. 0002
- .0J45

.0031 -.0353

.0312 -.0556 -.0453 2
-.0307 .0177 -.4702 1
-.0278 .2632 1 0 m
-.0107 .0177 -.4702 -1
.0312 -.0556 -.0453 -2
.0031 -.0359

-. 0045
-.0002

2 1 0

n

B2 = .0944089

a) Coefficients of Semicausal PEF

.329 .338 .340 .334 .321

.322 .328 .325 .313 .294

.316 .316 .306 .287 .262 k

.313 .311 .286 .380 .341

.311 .309 .293 .263 .234

1 (0,0)

b) Covariance Mismatch, {r(k,l) - P(k,f)}

Fig. 7: Rationalized Semicausal Model Corresponding to q=2, {p1(k)}

Truncated to 5 Terms, {P2 (k)} Truncated to 3 Terms and p=2.
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2 5 3
A(zl,z 2 ) = I - Z a(m,O)zlm I - a(m,1)zmz21 2 - Z a(m,2)z mz_2

m=-2 m=-5 M=-3 12
m ~O

The SDF realized by this model is then

S(z1,z2) 62(1a(m,O)zlm)/A(zl,z2 )A(zl l,z2
I)

m=-2
m O

The coefficients fa(m,O)l can be seen to differ appreciably from the 'true'

coefficients in Fig. 6, which explains the substantial covariance mismatch

in Fig. 7.

By using q=1, truncating {p1 (k)} to 15 terms and using p=2 yielded the

semi-causal PEF in Fig. 8, having a total of 24 coefficients. As can be

seen, the covariance match here is much better than in the previous case.

Also, the coefficients {a(m,O)}22 are closer to the true coefficients. This

emphasizes the importance of the leading reflection coefficients which have

the larger magnitudes. Since [see (59)].

q r
b(z) b 0(z) [- Pi(Z 1)P_(Zr )J 6 (z

q 1 0 i Iq q 01

the coefficients {a(m,O)} will be most sensitive to {P1 (k)}. However, the

price paid is large order models.

Semi-causal models are also obtained by solving the set of linear block

Toeplitz equations (62). Fig. 9 shows the semi-causal PEFs obtained for

model orders (p,q) = (1,1), (2,2), (3,3). Examination of the PEFs

for orders (1,1), (2,2) and (3,3) shows that the PEF coefficients converge

quite rapidly to the true coefficients in Fig. 6. Also, 623,3 < 82,2

and approach the limit, 62 of the infinite PEF. The correlation match also

gets better and these are shown in Fig. 10.
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-. 0003
-. 0016
-.0089
-. 0408 -. 012 2

.0156 -. 3969 1

.250 1. 0 m

.0156 -.3969 -1
-. 0408 -. 012 -2
-.0089
-.0016
-.0003

1 0

n

2 .09398

a) Semicausal PEF C:efficients

.089 .118 .142 .159 .161

.074 .106 .134 .154 .156

.058 .092 .124 .148 .148

.046 .082 .116 .145 .143

.041 .077 .113 .143 .142

b) Covariance Mismatch, {r(k,l) - r(k,f)}

Fig. 8: Semicausal Model Obtained Using q=1, Truncating
{o1(k)} to 15 Terms, and p=2.
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.0135 -. ;887 1 .0094 .0268 -.0028 2
-.25 4 6 1.0 0 m .0187 -.0388 -.3875 1

-.0135 -.3887 -1 .0304 -.2578 1.0 0 m
.0187 -.0388 -.3875 -1
.0094 .0268 -.2238 -2

1 0 2 1 0
n

B .0945433 .093297

a) PEF Coefficients of b) PEF Coefficients of
(p,o)=(1,l) Semicausal (p,q):(2,2) Semicausal
Model Model

.0017 .0011 .0058 -.0097 3

.0009 .0049 .0263 .0018 2

.0017 .0166 -.0384 -.3869 1

.0021 .0281 -.2753 1.0 0 m

.0017 .0166 -.0384 -.3869 -1

.0009 .0049 .0263 .0018 -2

.0017 .0011 .0058 -.0097 -3

3 2 1 0
n

2
a .0932627

c) PEF Coefficients of
(p,q) :(3,3) Semicausal
Model

Fig. 9: Semicausal Model PEFs Obtained by Solving
Finite Order Equations
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-1.492 -1.462 -1.438 -1.429 -1.414 .099 .111 .120 .127 .130
-1.577 -1.544 -1.514 -1.492 -1.485 .097 .109 .117 .123 .125
-1.639 -1.600 -1.564 -1.557 -1.530 k .095 .107 .115 .119 .120 k
-1.674 -1.632 -1.589 -1.553 -1.551 .095 .106 .113 .117 .117
-1.687 -1.642 -1.597 -1.559 -1.557 .095 .106 .113 .115 .116

2 (0,0) (0,0)

a) {r(k,f) - r1,1 (k,P)} b) {r(k,f) - r2 ,2(k,I)}

.084 .090 .094 .098 .099

.082 .088 .091 .094 .094

.080 .085 .088 .090 .090 k

.080 .084 .086 .088 .088

.079 .083 .085 .087 .087

f (0,0)

c) fr(k,2) - r 3,3(k,)l

Fig. 10: Covariance Mismatches of the Semicausal
Models in Fig. 9
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Next, for causal models, the PEF corresponding to the infinite order

MVR is shown in Fig. 11. This has been obtained by Wiener-Doob factorization,

[10]. Causal models were realized using the rationalization procedure similar

to Section V. Recall that the procedure is the same except that instead of

fitting a non-causal model to bq(Z 1 ), as in the semi-causal case, a further

factorization of bq(Z 1 ) into minimum phase and maximum phase factors is involved

in the causal case. Fig. 12 shows the PEF of the model obtained by using q=2.

truncating {P1(k)} and {02 (k)) to 5 and 3 terms, respectively, and fitting a

second order (p=2) 1-D causal model to 62(z1).

The PEF has 17 coefficients and realizes the SDF given by

S(z1,Z2 ) = 
2/A(zl,z 2)A(z1l,z 2)

2 M 5 -M 1 32
A(zl,z2) = 1 - 2 a(m,O)Z 1 a(m,l)zlmZ21 - a(m,2)z 1mz 

2

m=l m=-3 m=-I1

From Fig. 12(f) the covariance mismatch is seen to be quite high, though

it is less than the corresponding semi-causal case (Fig. 7(b)). Fig. 13

shows the causal PEF coefficients corresponding to q = 1, { 1(k) truncated

to 15 terms and p = 5. The total number of coefficients is 26. The correlation

mismatch is much less than the previous case, and better than the corresponding

semi-causal case (Fig. 8(b)). Considerations of the effects of reflection

coefficient truncation are similar to the semi-causal case.

The PEFs obtained by solution of the linear equations of (88) corresponding

to causal model orders of (p,q) = (1,1), (2,2), and (3,3) are shown in

Fig. 14. This again verifies the convergence of the PEFs {Ap~q(Zlz 2)} and

prediction errors, ( to their limiting values in Fig. 11. Fig. 15
p e,



35a -

* . .0002 .0013 -. 0021
• .0003 .0019 -.0030

.0004 .0028 -.0045

* .0003 .0007 .0045 -.0070
* .0004 .0010 .0091 -.0111 3

.0004 .0007 .0068 .0363 -.0029 2

.0005 .0016 .0238 -.0299 -.4759 .

.0005 .0025 .0460 -.3517 1.0000 0 m

.0005 .0025 .0426 -.2142 -1

.0005 .0017 .0271 -.0712 -2

.0004 .0011 .0144 -.0315

.0003 .0008 .0083 -.0169
* .0006 .0052 -.0101

.0004 .0034 -.0065
.0023 -.0044

3 2 1 0

02 0.114378

Fig. 11: Infinite Order Causal PEF Obtained by
Wiener-Doob Factorization
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.0004

.0109
.0080 .0671
.0300 .1380 -.1299 2
.0105 .0582 -.5827 1
.0434 -.3183 1. 0 m
.0674 -.2091 -1

-.0669 -2
-.0034 -3

2 1 0

n

B = .1255927

a) Coefficients of Causal PEF

.231 .224 .212 .179 .150

.220 .206 .183 .148 .111

.208 .191 .160 .118 .073 ic

.203 .183 .149 .101 .058

.200 .180 .145 .095 .053

(0,0)

b) Covariance Mismatch, (r(k,A) -

Fig. 12: Rationalized Causal Model Corresponding to q=2, {pl(k)}
Truncated to 5 Terms, {P2(k)} Truncated to 3 Terms and p=2

I
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.0333
.0011
.0013
.0050
.0125 - .0197
.0165 - .0150
.0247 -.0207
.0620 -.0146 -2

.0100 -.5043 -1

-. 3084 1. 0 m
- .175 -1

- .0424

- .0129
- .0052

.0025

.0014

.0012

0
n

82 .17803

a) Coefficients of Causal PEF

-.011 .015 .034 .046 .044
- .027 .002 .027 .043 .040

-.043 -.011 .019 .040 .038 k

-.054 -.021 .012 .039 .037

- .059 - .025 .009 .038 .036

1 (0,0)

b) Covariance Mismatch tr(k,!) - ?-(k,f)I

Fig. 13: Rationalized Causal Model Obtained Using q=l,
tp1 (k)} Truncated to 15 Terms and p = 5
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_.01 .0377 - 0124 2

.. 02 0 -.0229 -. 4797

.054 -.4963 1 -.0516 -.353, 1.0 0

-.3113 1.0 0 m -.0509 216 -2
.233 - -.0289 -.1009 -2

2 0
S 0 2

nn

2 .118936 2,2 = .1!499

b) PEF coefficients ofa) PEF coefficients Of 
(p q) = 2,2) causal M~odel.

(p,) (1,1) Causal Model.

.0035 .0019 .0Q95 -.0175 3

.0019 .0063 .0370 -. 0035 2

.0031 .0235 -.0295 -.4774 1

.0052 .0B58 -. 3519 1.0000 0 m

.o042 .0427 -.219 -
.0039 .0285 -. 0715 -2

.0038 .0125 -. 0478 -3

3 2 
0

n

2 .i1459503,3

c) PEF Coefficients of

(pm) = (3,3) Model.

Fig. 14: Causal Mode) PEFs Obtained 
by Solving

Finite Order Equations
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.144 .182 .218 .252 .277 .181 .199 .215 .232 .247

.149 .187 .225 .259 .284 .181 .197 .211 .224 .236

.156 .194 .233 .267 .286 k .180 .195 .206 .215 .222 k

.169 .205 .244 .279 .283 .183 .196 .204 .209 .212

.186 .219 .253 .280 .280 .187 .198 .206 .208 .208

f (0,0) (0,0)

a) (r(k,I) - r ,l(k,l)) b) (r(k,A) - r2,2(k,e)l

.130 .134 .147 .156 .164

.128 .136 .142 .148 .153

.126 .133 .137 .141 .144 k

.127 .132 .135 .138 .139

.128 .133 .135 .136 .137

A (0,0)

c) {r(k,k) - r 3 3 (k,t))

Fig. 15: Covariance Mismatches for the Causal
Models in Fig. 14
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shows the covariance mismatches obtained with the above three causal models.

The (1,I) causal model seems to provide a surprisingly good covariance match

compared to the corresponding semi-causal model (Fig. 10(a)).

VIII. CONCLUSIONS

We have proved a new theorem on the properties of 1-D non-causal models

which establishes convergence of PEFs , and guarantees model stability and

improvement in covariance matching properties after a finite model order.

The spectral factorization methods of [17,8] (for causal models) and [10)

(for causal and semi-causal models) realize irrational models by the solution

of an infinite set of normal equations. Theorems were proven to establish

existence and uniqueness of solutions. The SDFs realized by the Levinson

like computational algorithm of [17,8] were shown to converge uniformly to the

true SOF. A method of rationalizing the reflection coefficients obtained in

this algorithm was used to obtain rational models with guaranteed stability.

A method of realizing 2-D non-causal, semi-causal and causal models by

solving a set of linear equations [110] was considered. The advantage of this

method is that only a finite set of equations need be solved. However, these

models were not guaranteed to be stable or provide convariance match. The

results proven in this paper have shown the uniform convergence of the PEF

sequence to a limit PEF, from which model stability and improved covariance

match were shown to follow after some finite model order. These results enhance

the practical appeal of this technique.

Examples of finite order model realizations were shown for an isotropic

covariance function, which corroborated the tt~eory developed. For this

covariance function, it was found that the non-causal model needed much larger

model orders than either the causal or semi-causal models, to provide uniformity
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in covariance matching results. The performance of the latter two models were

quite good and on par with each other.
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APPENDIX

Definitions: The following definitions and properties are useful in proving

the theorems presented in this paper.

a) For a vector

x = [x(1) x(2) x(3) .... x(N)]T

the Frobenius norm is defined as

A-(A-i)
( xlF  - Xz x (i) (A-1)

If A is a M x N matrix, then

N 2
-AF z a2(i,j) (A-2)

i=1 j=1

It can be proven that

IlAx 11F  <S 11A llFllXIF (A-3)

b) The L2 or 2-norm of x is

11- 2 2 x/ ( 2 ) = 1 1F (A-4)
i =1

If A is a M x N matrix then,

11Al 12  X max(A(A-5)

where X(X) denotes an eigenvalue of the matrix X.

If A is square symmetric, then

1IAl112  X Nmax(A) , 11A'112  " Imln (A) (A-6)

AI SO,
il~xl z _ ll~lzlll(2 (A-7)

11AX12 < 1A 12 11x 11
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and if A is Mx NandB is N xL, then

IIABIIF < IIA 1211BIIF (A-8)

c) For the sequence of symmetric matrices

Ar = {a(i,j)} , (ij) = 1,2,...,r for r = 1,2,...,N

let X k(A), k = 1,2,...,r denote the kth eigenvalue of A where

XI(Ar) > X2 (Ar) > ... < Xr(A r )

Then Xk+l (Ai+ 1) < Xk(Ai) < Xk(Ai+l) (A-9)

The significance of this result [12] is that the smallest eigenvalue

of a matrix sequence is non-increasing with size, and is useful in

establishing upper bounds.

Proof of Theorem 1:

Let S(z) be analytic in Z1 = {y < IzI < l/y, 0 < y < 1). The PA condition

on S(z) yields i) {r(k)} forms a positive definite, exponentially bounded

sequence, i.e. jr(k)l < Byl ki, U, ii) S'l(z) is PA in some

Z = {c < IzI < 1/o , 0 < a < 11. Therefore, if S 1 (z) = I r-(L)z -  ,

z C Z2 then Jr'(t)l = AaIZl , Vt. From (27), for the infinite non-causal

MVR we have

S'l(z) = i1 - a()z "') (A-10)

which means r'(O) = 1 , and a(k) = -02 r (), Vt. Since r-(i) is

exponentially bounded, this means ja(i)l < As2 al I , Vt and, the limit PEF
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A(z) = 1 - I a(2)z "  is PA in Z2. Now, subtracting the realization equation

is0

(32) for the pth order model from (26) for InIsp, using the definitions in

(33), and defining a vector vp with elements vp(n) = I a(k)r(n-i), InI p,I)j>p

we get

R a -a] = (2)p + vp
Pp- p -p -ip

where a [-a(-p) - a(-p+l) .... -a(-1) 1 -a(1) .... a(p)]

Now, using (33a) and defining

a' 2a (A-11)

p

we get from the above equation that

a -a = R v
p- p -p

Taking 1 -112 norms on both sides of the above equation and using (A-7) we get

1) ' -_)2  < 11 R p1 11211.KpII2 •

pp

Using the bounds for {r(f)} and (a(W) and evaluating the norm of v p, we obtain

11al- JJR 11 2A BIa ay P+ ' ap

Denoting the term in square brackets by C and noting that Ix(1)I :i IIA112 for

any arbitrary A, the above inequality yields ja (k) -a(k)l < CJJR p 12a p for IklsP. Using

(A-8) and the fact that "min (R p) > min (Rp+1) > .... = inf[S(w)] C'

[see (A-9)] we obtain ta'(k) -a(k)l < C" p , C" C/C'. Since OP < aIkI

p - < k]

la'(k)-a(k)t < C"4 , Ikj p (A-12)

p(
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With the above exponential bound in (A-12), it becomes a simple matter to

establish uniform convergence of the sequence of PEFs {Ap (z)} to A(z) [16].

To see this, we write the expression for IA'(z)-A(z)l, use (A-12) and the

bound for Ia(k)l to yield

IA'(z-A(z) I < VOL1  c111zlI +a2[F (aizi)k + (cjz I)k]
k=-p k=p+l k=p+l

In the neighborhood Z3  {6 < Izi < - , <6<1} the above bound can be

proven to be

IA(z)-A(z)I < C sP (A-13)

where C>O and O<E<l are constants depending on o1' 6, etc. Substituting

for a' in terms of a [see (A-11)], it is easy to prove that

p 2  2 2A A_ n- - B 0 (A-14)

where C' = inf[IS(z)l] in some neighborhood of Izi = 1.

Hence, {Ap (z)} converge uniformly to A(z) in some neighborhood of IzI = 1.

It has been proven that {2 } is a monotone non-increasing sequence. Since S(z)
p

is PA, a2 in (30) exists and the sequence converges to this limit.

Stability: Since S(w) > 0 and analytic, A(w) is analytic and has no zeros

on the unit circle. From (A-14) we obtain Ap (w) > A(w) - . Hence, a model

order p0 can be chosen so that for all p > p0, inf[A(w)] - ep > 0, guaranteeing

stability of all non-causal models of order greater than po.

Correlation Match: 2 - 2P

For p > po' IS(w)-Sp(4 )  = 82 < C S()Sp(w)I <K'
0 p 1AW7 p(l B

In writing in the above we have used (A-11), (A-12), the least upper bound for

S(w) and the fact that Sp () can be uniformly bounded from above for p>p0  If

!p
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{r p(k)} denote the covariances realized by the pth order model, then

Ir(k) - r(k)l < IS( ) - Sp()Idw < K' p

Thus, the correlation match gets better (exponentially so) with increasing model

order.

Proof of Theorem 2:

Subtracting the realization equation (42), for the infinite order MVR from

(48), the realization equation for the (p,q) order model, for (k,k)cW3 and using

the definitions in (49), we obtain

Sa a =[2 _ ~2 ]1 +p q
R Ea(m,n)r(k-m,Z-n) + E E a(m,n)r(k-m,z-n)

p,qp,q -] =  2 -p,q ,q m=-p InI>q n=-q Iml>p

(k,)cW 3

where a is the vector of elements {a(m,n)}, (mn)dW3 arranged corresponding to

the elements of a ,q. The summations are interpreted as vectors with elements

indexed in (k,Z). Defining

S2 p,q (A-15)

p ,q

we can write

p q
a - = R A E (.) + () ,( )W 3

- m=-p Inj>q n=-q ImI>p

where (.) denotes the quantities to be sunned, i.e. {a(m,n)r(k-m,t-n)}.

Now taking Frobenius (11 '11F norms on both sides of the above equation,

using (A-8), the bounds in (4) for r(k,x) and a(k,l), and evaluating the

resulting summations, we find that for some positive constants C1,C2 ,C3.

I- 1 1(lpc 1 )
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Using (A-6), ll£ pq1I 2 =  I/.min(Rp,q Also, since Xmin (R pq) is monotonically

non-increasing with increasing (p,q) [see (A-9)] with limiting value S = inf S(w1,w2),

the above bound may be written as

E [a' (m,n) - a(m,n)]2 1 p+ q+ p q

(m,n)eW 3  pq amn 1 1  2 2 312

Hence, lii Z [a,, (m,n)-a(m,n)]2 = 0
p,q-* m,neW3

This implies that

lim E jal (m,n) - a(m,n)l = 0 (A-16)

p,q-,o m,nEW3  pq

i.e. the sequence {a q(m,n) - a(m,n)}, indexed in (p,q), with (m,n)eW3 is

absolutely summable on the unit circles, Izl1 = Iz2 1 = I and converges to zero

as (p,q) +

Now

IA;,q(Zlz 2 )-A(ZlZ 2)1 = p(k,E)cw3[a ,q(k,Z)-a(k,Z)]zlkz2
-Z

E kiW (k~) k~)] z 1 k z 2z

(k, )OW3

Using the bound for a(k,k) and evaluating the second summation, we 
get

for some positive constants KI,K 2 '

1A;,q(ZlIZ 2)AZz 2)1 k, W3  a,q(k,%)-a(kZ)i + Kjal + K2 01 ;

Iz1 1 = Iz 21 = 1

Letting (p,q) E la,' (k,i)-a(k,E)I + K aP + K2q

k,ZEW 3  pq 1 1 2

whave

I
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JA ,q(ZlZ 2 )-A(ZlZ 2)l < c(p,q) , Iz11 = Iz21 = 1 (A-17)

Since lim e(p,q) = 0 it follows that lim A' q(z. 'z2  A(z1,z2 ) uniformly
p,q, (p,q)- P '

on Iz11 = Iz21 = 1.

Now, (U, } is non-increasing with (p,q) with lower limit B2 given by (46),
p 'q

since by assumption S-1 (W'W2) exists. Thus, similar to the 1-D non-causal case,

lAp,q(Z 1 ,Z2)-A(ZlZ 2)l < E'(p,q) , Iz1 1 = Iz2 1

This establishes the uniform convergence of the PEFs to the limit PEF on

the unit circles.

b) Stability: A(zl,z2 ) is PA on the unit circles. Let a = inf A(wI,W 2) > 0.

Since A p,q (W2)-A(WlW2)1 < s'(p,q), we can find some (p o,q ) < - such

that for (p,q) > (po,q0 ), E'(p,q) < a implying that A(wI,w 2) > a - E'(p,q) > 0

(p,q) > (p o,q )

Hence, the non-causal models are guaranteed to be stable for

(p,q) > (po,q 0 ).

c) Correlation Match:

For (pq) > (po0qo),

2 2

IS(w-w 2)Spq(ww 2)2 = I w <k I (p,q)

The above bound is obtained similar to the 1-D non-causal case. Hence,

it follows that

Ir(kt)-rp ,q(kt)l < k e(p,q) , (pq) > (p0 ,q0 )
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Proof of Theorem 3:

Proof: Since S(z,z 2) is PA, S(z1 ,z2) = log S(Z1,z2) is also analytic

in a neighborhood of the unit circles, say, ZI = xI <jzI1/Xi, c2 <Iz 2 1<1/i 2;

0<CqIc 2<1}. A unique Laurent expansion for S in Z1 can be written as

S(Zlz 2) = c(m,n)zImz2n , Z2 Z1m,n

The above series can be decomposed as S H + - + SC [10] where

R + T c(m,0)z m + OE T c(m,n)z1m z2 -n
m=-O n=1 m=-00

-1 -n

H = ' c(m,O)zIm + E c(m,n)zi z2
M=-00 m=- n=-oo

= c(m,O)z-m

and are analytic in Z = {L1<z 1I<1/a 1,Iz2 >>a2), Z3 
= {OI<Iz 11<1/axi, Iz2 1<0 21,

and Z4 = {a1<IzlI<I/t1 , respectively. The positive monotone property of the

exponential function implies that e , e , and e are also analytic in

Z2, Z3, and Z4, respectively.

Hence, we may write

S 
e e

Defining A'(Z,z 2) e , we have

S(ZlZ 2) =(zl'z2)A'(z Iz 2

where a6(z I) = e c= A'(zl,), is a 1-0 SOF.
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The arguments above show that A'(z 19z2) is semi-minimum phase. With

A(ZlZ2) 1 - z a(m,n)zImz~n B2A' (z1 ,z2 )
m,ncS 2

we get

2 a0)(z1)
S(zl,z2) - -1 -1

A(zl,z 2 )A(z1 ,z 2 )

With the given cepstral decomposition, and the requirement that a(O,O)=l,

it follows that the decomposition is unique.

Proof of Theorem 4:

The proof of this theorem is similar to that of Marzetta's [7,8] for

An(Zlz2) from which the contention for A n(zlz 2) follows. The convergence of

the SDFs can be shown similar to Theorem I where all the quantities are now

functions of z1. The detailed proof may be found in [16].

Proof of Theorem 5:

a) With the PA assumption on the SDF, S(zl,z2) and following the method

of proof in Theorem 2, it is easy to prove that

E [a' (mn)-a(m,n)]2 < C OR + C2a q + COe:cq, 0< ,
(m,n)EW2  p q 1 1 2 2 3 1 2 '

where

a',(mn) - -a (m,n) , (m,n)e W2  (A-18)
A~q 12  p,q2

p,q

Hence,

lim la'q(m,n) - a(m,n)l = 0 (A-19)
p,q- (m,n)cW

2

implying that the sequence {a ,q(m,n) - a(m,n)}, indexed in (p,q)

with (m,n) c W2 is absolutely summable on the unit circles, and
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converges to zero as (p,q)-.

Now, for Z = {1lzl = 1, Iz21 > 1

< E la (mn)-a(m,n) i mIz 2 
- n

IA ,q(ZlZ 2 -A(ZZ 2)t_ (mn)EW2  ,q IzI

+ E la(m,n)JIz mtz2I -n < a'q (m,n)-a(m,n)l
(m,n)tW2  (mn)cW p

+ j a(m,n)j c c(p,q). (A-20)
(m,n)4W 2

The PA assumption for S(z1 ,z2) implies that {a(m,n)} are exponentially

bounded. This and (A-18) together imply that lim e(p,q) 0
p ,q--=

Hence, lim A'(Zlz 2) - A(zl,Z2 ) uniformly on (z1 ,Z2 ) C ZI.
p,q2

Similar to non-causal models, it can be established that {B2 } is a
p~q 2

nonincreasing sequence that converges to a positive lower limit,

We now give an expression for B2 which is also given in [10].

Defining d(z )1 a 01(Z 1 ), and from Theorems 3 and 4, it follows

that d(zI) is PA in a neighborhood of Izl = 1, so that d-1 (z) is

likewise.

Now, a2 =1 iT sd 1w iT 2ao(w )dw4,2 4 SF(w,w 2 d 1 ~2  27 -Tr a0( 1)d 1

Thus,

- 1 fr d1

2 : r d- w1 )dw, > 0

Using (AIS-A20), we obtain

Apq(ZlZ 2)-A(ZlZ 2 )l < [a ,qE(p,q)(B 2,q 2)Amax]/B 2 
- c'(p,q), (A-21)

ZlZ 2  1

where Aa x 0 suplA(z,Z 2 )I , Z CZ2 E Z1 .
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This proves the uniform convergence of the sequence of the semi-causal PEFs

Apq(ZliZ2 ) to the analytic, semi-causal limit PEF A(zlz 2) in ZI.

b) To prove stability, we note from (A-21) that

r p,q-rl < E'(p,q)

and Ii pq-ii < E'(p,q)

where rp,q, r and i p,qi represent the real and imaginary parts of

Ap,q(ZlZ 2 ) and A(zlz 2 ) for any z1,z2 E Z1. Since r and i are not

simultaneously zero, we can find some (p0,q0 ) < - such that for

(p,q)>(po,q0 ), rpjq and ip,q are sufficiently close to r and i,

respectively. This implies that the models will be stable for

(p,q)>(po ,q ).

c) We now prove uniform convergence of the spectra realized by the models

for (p,q) > (p0,q0 ) to the given SDF on the unit circles. This in

turn implies increasingly accurate correlation match. Since for

(p,q) > (p0 ,q0 ), Ap,q(ZlZ 2) has no zeroes in Z1 , it is semi-minimum

phase, and it is easy to establish the uniform convergence of

1/Ap'q(ZlZ 2) to 1/A(zlz 2 ). Also, since aop,q (z1 ) = Ap,q(Z1CO), it

follows that aop,q(z1 ) converges uniformly to ao(zI) on 1zjj = 1.

Since 2 monotonically, and since the PEF sequence can be

uniformly bounded, it follows that

2 (z) a2a (z )
Pq gOp'g 1 0 1 1 1 I2

Ap~q(Z1,z2)Ap,q(ZlZ2) A(z1 ,z2 )A(z 1 ,lz 2

uniformly, i.e.

iSp,q(ZlZ 2) - S(z1,Z2)I < c"(p,q) 1z11 = Iz21 = 1

In proving the uniform convergence of the SDFs from that of the PEF
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sequence, we obtain a bound E;"(p,q) which may be weaker than e'(p,q).

However, lrn E£"(p,q) =0.
(p,q)-

If {r pq(k,k)l are the covariances realized by the (p,q) order model,

then,

rpq 47T 2k2) -7 fIpq~d1 ,2) - S(wl'w 2) Idw1dw2

This proves that correlation match gets increasingly better with

(p,q) > (p0 q 0).



- 50 -

REFERENCES

1. W. K. Pratt, "Digital Image Processing," Wiley, N.Y., 1978.

2. A. K. Jain, "Image Data Compression - A Review," Proc. IEEE, Vol. 69,
pp. 349-389, March 1981.

3. J. L. Doob, "Stochastic Processes," Wiley, N.Y., 1953.

4. J. Makhoul, "Linear Prediction: A Tutorial Review," Proc. IEEE, Vol. 63,
pp. 561-580, April 1975.

5. P. Whittle, "On Stationary Processes in the Plane," Biometrika, Vol. 41,
pp. 434-449, Dec. 1954.

6. M. P. Ekstrom and J. W. Woods, "Two-Dimensional Spectral Factorization
with Applications in Recursive Digital Filtering," IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. ASSP-24, #2, pp. 115-128, April 1976.

7. T. L. Marzetta, "Two-Dimensional Linear Prediction: Arrays Minimum Phase
Prediction Error Filters, and Reflection Coefficient Arrays," IEEE Trans.
Acoust., Speech, Signal Processing, Vol. ASSP-28, #6, pp. 725-733, Dec. 1980.

8. T. L. Marzetta, "A Linear Prediction Approach to Two-Dimensional Spectral
Factorization and Spectral Estimation," Ph.D. Dissertation, Dept. Elec.
Engg. & Comput. Sc.; MIT, Cambridge, MA, Feb. 1978.

9. A. K. Jain, "Partial Differential Equations and Finite Difference Methods
in Image Processing, Part I - Image Representation," J. Opt. Theo. Appl.,
Vol. 23, #1, pp. 65-91, Sept. 1977.

10. A. K. Jain, "Advances in Mathematical Models for Image Processing," Proc.
IEEE, Vol. 69, #5, pp. 502-528, May 1981.

11. A. Oppenheim and R. Schafer, "Digital Signal Processing," Prentice-Hall,
1975.

12. R. Bellman, "Introduction to Matrix Analysis," McGraw Hill, New York, 1970.

13. A. K. Jain, "A Fast Karhunen-Loeve Transform for a Class of Random
Processes," IEEE Trans. Commun., Vol. COM-24, pp. 1023-1029.

14. A. K. Jain, "A Fast Karhunen-Loeve Transform for Recursive Filtering of
Images Corrupted by White and Colored Noise," IEEE Trans. Comput., Vol. C-26,
pp. 560-571, June 1977.

15. J. W. Woods, "Two-Dimensional Discrete Markovian Fields," IEEE Trans. Inform.
Theory, Vol. IT-18, pp. 232-240, March 1972.

16. S. Ranganath, "Two-Dimensional Spectral Factorization, Spectral Estimation,
and Applications in Image Processing," Ph.D. Dissertation, Dept. Elec.
Computer Engg., University of California, Davis, March 1983.

I



LIST OF FIGURES
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Figure 9: Semi-causal models obtained by solving finite order linear equations.
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b) PEF coefficients of (p,q) - (2,2) semi-causal model



c) PEF coefficients of (p,q) = (3,3) semi-causal model
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b) Covariance mismatch, {r(k,k) - (k,k))

Figure 13: Rationalized causal model obtained using q=1, {p1 (k)} truncated
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a) Coefficients of causal PEF
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Figure 14: Causal models obtained by solving finite order linear equations.

a) PEF coefficients of (p,q) = (1,1) causal model

b) PEF coefficients of (p,q) = (2,2) causal model
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